
For Review
 O

nly

Cloud based Real-Time multi-robot Collision Avoidance for Swarm

Robotics

Journal: Tsinghua Science and Technology

Manuscript ID TST-2015-0067

Manuscript Type: Special Issue 1

Keywords:
Internet of things, cloud computing, swarm robotics, collision

avoidance, real-time stream processing, big data

Speciality:
Cloud Computing, Robotics, Unmanned Autonomous Vehicle,

Parallel and Distributed Computing, Big Data

https://mc03.manuscriptcentral.com/tst

Tsinghua Science and Technology

For Review
 O

nly

TSINGHUA SCIENCE AND TECHNOLOGY

ISSN 1007 - 0214 0 / pp -

Volume , Number , 2015

Cloud based Real-Time multi-robot Collision Avoidance for Swarm

Robotics

Abstract: Nowadays, Cloud Computing has brought many new and efficient approaches for computation

intensive application areas. One typical area is Cloud based real-time device control system, such as the IoT

Cloud Platform. This kind of platform shifts computation load from the device to the Cloud and provide powerful

processing capabilities to a simple device. In Swarm robotics, robots are supposed to be small, energy efficient

and low-cost, but still smart enough to carry out individual and swarm intelligence. These two goals are normally

contradictory to each other. Besides, in real world robot control, real-time on-line data processing is required, but

most of the current Cloud Robotic Systems are focusing on off-line batch processing. However, Cloud based real-

time device control system may provide a way that leads this research area out of its dilemma. This paper explores

the feasibility of Cloud based real-time control of massive complex robots by implementing a relatively

complicated but better performed local collision avoidance algorithm. The Cloud based application and

corresponding Cloud driver, which connects the robot and the Cloud, are developed and deployed in Cloud

environment. Simulation tests are carried out and the results show that, when the number of robots increases, by

simply scaling the computation resources for the application, the algorithm can still maintain the preset control

frequency. Such characteristics verify that the Cloud computing environment is a new efficient platform for

studying massive complex robots in swarm robotics.

Key words: Internet of things; cloud computing; big data; swarm robotics; collision avoidance; real-time stream processing

1 Introduction

Since Cloud computing can provide elastic, on demand,

ubiquitous worldwide accessible computing and storage

resources, it has been introduced into various areas from

big data analysis to real-time robot control. One very

promising area is developing a universal platform for

real-time smart device control applications using cloud

computing technology. The IoT (Internet of Things)[1, 2]

Cloud is such a platform that provides real-time device

control services. The IoT Cloud system is normally

featured as both real-time responding and big data

processing. As a large number of smart devices are

connected to the cloud, massive real-time stream data

from these devices needs to be analyzed and processed

before it can be recorded in the database and processed

offline by the cloud. In some scenarios, such as robot

control, the stream data from devices has to be processed

and fed back in real time. These time-critical tasks

require the system to respond fast enough, thus a batch

analytics technique such as MapReduce is not viable for

this kind of application.

*To whom correspondence should be addressed.

Page 1 of 13

https://mc03.manuscriptcentral.com/tst

Tsinghua Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

2 Tsinghua Science and Technology, September 2015, vol(issue):000-000

However parallel processing ability and cluster

computing techniques like MapReduce are very

appealing, especially to systems that need to deal with a

large number of computation intensive entities. Swarm

robotics[3] is a typical research area that commonly deals

with such systems. In swarm robotics, normally, the

robot should be as small and energy efficient as possible[4,

5], but still it needs to be able to perform the basic

behaviors of an intelligent entity under research and can

also carry out high level swarm intelligence[6]. For a

traditional robotic system, these two aspects are mutually

exclusive. But with the help of cloud computing, most of

the computation can be offloaded to the cloud and, by

utilizing elastic cloud computing, the number of robots

in a swarm can scale flexibly. As most of the

computation is transferred into the cloud, the onboard

system of a robot can be greatly reduced, keeping only

sensors, communication and actuation modules and

leaving all high level algorithms to the cloud. Motivated

by such demand, several cloud platforms[7-11] dedicated

to robotic control have been designed. Nevertheless,

most of these systems mainly focus on static data

processing, such as object recognition, path planning and

so on. These tasks are not strictly time-critical as such

dynamic tasks as local collision avoidance[12].

The IoT Cloud platform, developed on a real-time

distributed processing framework, is a scalable real-time

stream data processing system[1]. This platform is much

more suitable for time-critical applications as it

processes stream data for real-time response. The core of

the IoT cloud is a distributed real-time stream

computation engine. Data from devices or databases can

be injected into the engine as streams and the computing

logic running in the engine will continuously process the

data and then emit results out. The computation engine

utilizes cluster computing paradigm, which makes it easy

to scale and also fault-tolerant.

This paper explores the parallelism and scalability of the

IoT Cloud platform in real-time data processing by

implementing multi-robot collision avoidance. Unlike

other parallel algorithm research, this paper focuses on

entity or agent level parallelization and mainly studies

computation resource scaling according to the

computation load. And, unlike normal swarm robotic

researches that seek for simplified models to reduce

computation, this paper implements a complicated

algorithm that reflects in-depth details about the physical

system and can be used in a real world scenario. The

results of the experiment demonstrate that the IoT Cloud

introduced in this paper is an effective, scalable platform

for swarm robotics. The main contribution of our

research is exploring novel cloud frameworks for

implementation of computation intensive algorithms in

swarm robotics.

The remainder of this paper is organized as follows:

Section II briefly introduces collision avoidance theory

and related algorithms. Section III describes the

architecture of the IoT Cloud Platform. Section IV

explains the design of the cloud application in detail.

Section V presents our experiment over the whole system

and the application, and analyzes the results. In the end,

Section VI summarizes and concludes the whole paper.

2 Local collision avoidance for non-holonomic
robots

Local collision avoidance is one of the most important

aspects in robot navigation. The task of local collision

avoidance is to dynamically compute the optimal

collision free velocity for a robot, which is based on

the observation of the environment. Unlike motion

and path planning that have static knowledge of the

global environment and make one-time decisions,

local collision avoidance needs to respond to the

dynamics of the environment[12] such as other active

entities or obstacles that are not presented in the static

map.

Current local collision avoidance methods are mainly

based on the Velocity Obstacle (VO) theory[13]. VOs

are areas in velocity space where if the velocity of a

robot points into one of the areas it will collide with

another robot after some time. A diagram of VO is

shown in Figure 1. Several types of VO are defined

according to the different VO calculation methods.

Reciprocal Velocity Obstacle (RVO)[14] splits the

collision avoidance responsibility equally between the

two robots that may collide with each other, while the

Hybrid RVO (HRVO)[15] translates apex of RVO to

the intersection of the RVO leg closest to its own

Fig. 1 Velocity obstacle introduced by robot B

Page 2 of 13

https://mc03.manuscriptcentral.com/tst

Tsinghua Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

et al.: Cloud based Real-Time multi-robot Collision Avoidance for Swarm Robotics 3

velocity and the leg of VO furthest from its own

velocity, which encourages choosing preferred sides

and reduces the chance of a reciprocal dance.

All these methods assume that the robot can reach any

velocity in the velocity space, one hundred percent

accurate localization information and circular robot

footprint. However, the real robot cannot satisfy such

prerequisites. Therefore other constraints need to be

attached to those VOs. These include kinematic

constraints such as acceleration and max velocity

limits, Non-Holonomic constraints[16] for differential

robots, and localization uncertainty[17]. When

considering localization uncertainty, a robot footprint

needs to be expanded so that it can cover the

uncertainty from localization and make sure that the

calculated velocity is valid even if localization is not

accurate. Simply using a circular footprint with an

extended radius may exclude possible valid velocities.

So a convex hull footprint calculated from the

Minkowski Sum of robots and obstacles is introduced

in calculating VOs by reference [18]. The calculation

of convex hull footprint for a robot is highly

computation intensive and may take around 50 percent

of the computation load.

Once all VOs are obtained from velocity space, an

optimization algorithm needs to be designed to select

optimal velocity from areas outside all VOs. There are

three key methods for collision free velocity selection.

They are Optimal Reciprocal Collision Avoidance

(ORCA) method, Clear Path method[19] and Sampling

based method. According to reference[18], Clear Path

method has relatively better overall performance in

real world experiments.

Taking into account all the detailed considerations

above, an algorithm, which can control robots in the

real world to avoid each other in a more effective way,

is developed by reference [18]. But such an algorithm

requires at least a laptop to run. In swarm robotics the

number of robots can reach about one hundred or more,

and, obviously, equipping a laptop for each robot can

greatly increase investment and, also, the size of the

robot, besides which, power consumption of a laptop

will lead to less robot running time. More importantly,

computation load may scale accordingly when the

number of robots increases.

To use the algorithm, but, at the same time, reduce the

“side effects”, one effective approach is offloading the

computation of the algorithm into a cloud environment

and connecting the robot through a wireless

network[20]. In this paper, the algorithm from [18],

which uses a convex hull footprint for VO calculating,

considers all aforementioned constraints, and utilizes

Clear Path method for optimal velocity computation,

is implemented. The following sections offer details

about the cloud platform and illustrate an

implementation of the algorithm.

3 The IoT Cloud architecture

The IoT Cloud[1] is a platform that provides cloud

services for a large number of Internet-accessible

devices. The IoT Cloud mainly consists of three layers:

Front-end Gateway Layer, Stream Processing Middle

Layer and Batch/Storage Back-end Layer. The three

layers are connected via message broker and

coordinated by Zookeeper. Figure 2 depicts all major

components of the system.

Fig. 2 The architecture of the IoT Cloud

The Front-end Gateway Layer is responsible for

connecting devices to the Message broker. As IoT

Cloud is designed to serve heterogeneous devices, it

needs a component to record specific information

about the devices and map between message broker

channels and native device data channels. Such a

component is the Gateway. All devices are connected

Page 3 of 13

https://mc03.manuscriptcentral.com/tst

Tsinghua Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

4 Tsinghua Science and Technology, September 2015, vol(issue):000-000

through the Gateways, and below the Gateways are

IoT Cloud device drivers which convert device data

into messages that cloud services can process. The

cloud device drivers first get data from devices and

then call IoT Cloud APIs to send converted data into

the cloud. The Gateway maintains connections

between devices and the cloud. At the same time, there

is a Gateway master that coordinates multiple

Gateways and registers connection information, such

as channel mapping between message broker and

devices, so that the Middle layer can discover devices

and provide service entries.

The Stream Processing layer handles real-time data

processing. This layer uses Apache Storm[21] as the

computation engine. Storm is a distributed real-time

streaming processing system that can process at most

one million Tuples (data type processed in Storm) per

second. It is very suitable for processing stream data

from numerous smart devices. Storm gets source data

from one of its components called Spout and then

sends data to a process component called Bolt. Spouts

and Bolts are arranged as nodes in a graph that are

connected by streams which resemble the edges of a

graph. Such a stream processing workflow is called

Topology. To use the IoT Cloud service, application

Topology should be developed first. Since data input

and output of the application Topology are closely

related to devices, the IoT Cloud platform provides

APIs to build custom input Spouts and output Bolts.

As mentioned before, the Gateway layer is responsible

for maintaining the connections of Spouts and Bolts to

the message broker by writing connection information

to Zookeeper[22]. To use the real-time stream

processing service in this layer, data from devices

should be sent to the correct message broker channels,

which are connected to the input Spouts of an

application via IoT Cloud device drivers. Then by

subscribing the channels that connect to the output

Bolts of the application Topology, results can be

fetched in real time. Such a data processing paradigm

is very suitable for robot controlling. Most of the work

in this paper focuses on designing and implementing

application Topology and its corresponding IoT Cloud

driver for robot collision avoidance. The bulk of the

computation required for the collision avoidance

algorithm is shifted to this layer. Once an application

is deployed into the IoT Cloud, it can provide services

to a large number of devices as long as they have the

correct IoT Cloud drivers. By deploying multiple

instances of the application or increasing the number

of computation nodes for the application, data

processing ability can be scaled accordingly.

The Batch/Storage Layer stores data from Stream

Processing Middle Layer and provides Batch

Processing/Data Mining services for the static data

from various distributed databases. Since this paper

mainly works on real-time data processing, this layer

will not be used.

4 Implementation of the collision avoidance
algorithm

4.1. Application overview

Figure 3 shows the overall design of the collision

avoidance application. In the front-end Gateway layer,

there is an IoT Cloud driver module which

communicates with devices and converts data between

message broker and local device. The driver is deployed

on the Gateway site of the IoT Cloud System, which runs

on a local desktop machine and is managed by the

Gateway. As most robots run Robot Operation System

(ROS)[23], here, ROS is adopted as the device driver that

interacts directly with the robots. The IoT Cloud driver

will subscribe ROS topics to get the robot state, such as

odometry, laser scans and so on, and then convert the

data into messages that can be transmitted through a

broker to the cloud. After finishing data processing, the

IoT Cloud will send back velocity commands through the

message broker. On receiving the message, the IoT

Cloud driver will convert the velocity command message

into a ROS message, which is then sent to the correct

ROS topic so that the robot can be controlled. This paper

uses ROS as a device driver just for demonstration.

Fig. 3 Overview of the Collision Avoidance

application

Page 4 of 13

https://mc03.manuscriptcentral.com/tst

Tsinghua Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

et al.: Cloud based Real-Time multi-robot Collision Avoidance for Swarm Robotics 5

Besides ROS, other device specific drivers can also be

used, as long as they can provide APIs for data retrieval.

The IoT Cloud computation engine, together with the

message broker servers, is deployed on the FutureGrid[1]

cloud platform. The complicated collision avoidance

algorithm is implemented as a Storm Topology running

in the computation engine. The message broker of the

IoT Cloud relays data from IoT Cloud driver and feeds it

into Spouts of the control Topology. When the velocity

command is calculated, the Topology will send the

command through an output Bolt to the message broker,

which then relays the message back to the cloud driver,

and then to the robot.

4.2. IoT Cloud driver for collision avoidance

The IoT Cloud driver is used to connect devices to the

IoT Cloud Platform. For different types of devices, the

Cloud drivers are different, but for the same type of

device they can use the same Cloud driver and only need

to spawn a new driver instance for each device. To

perform collision avoidance, odometry, laser scan and

pose array of the robot need to be sent to the cloud. All

the information is published by the robot through ROS

topics as shown in Figure 4. So, the IoT Cloud driver first

subscribes these topics and gets the ROS messages.

However these ROS messages are not viable for message

brokers, such as Rabbitmq, which is used in this work,

and it is the cloud driver that converts these messages

into custom defined data types which can be processed

by the message broker and the Topology.

Fig. 4 IoT Cloud driver for collision avoidance

The next thing that an IoT Cloud driver needs to do is

define IoT Cloud Channels for those ROS topics. For IoT

Cloud application Topology, each input Spout or output

Bolt is connected to a IoT Cloud Channel which is

predefined according to the application and the message

broker. All data is transmitted through these Channels.

While the number of Spouts and Bolts in an application

topology cannot be changed, the number of the robot that

connects to the cloud may vary from time to time, so IoT

Cloud Channels should be defined according to the robot

state information types rather than the robot entity. Thus

the IoT Cloud driver will create an IoT Cloud Channel

for each information type and publish converted

messages to the corresponding Cloud Channel. To

distinguish the messages sent from different robots, a

unique robot ID generated by the Cloud Driver is

attached to the message. The application Topology will

get the correct robot state according to the ID. However,

the Bolt of the application topology that publishes

velocity commands back to robots will also publish all

commands for different robots into one IoT Cloud

Channel. It is the Gateway that creates a command queue

for each cloud driver instance, and sends each message

to the correct queue according to the robot ID attached in

the message.

4.3. Topology design

All the algorithm and control logic for IoT Cloud-

based collision avoidance are implemented in a Storm

Topology. Before designing the application Topology,

some details of the collision avoidance algorithm

which is implemented in local mode should be

explored. The collision avoidance algorithm

introduced in section II is summarized in Figure 5.

Fig. 5 The collision avoidance algorithm

The algorithm runs as a control loop which executes

periodically. For a single loop, it starts by collecting the

robot’s newest state information, including getting

obstacles from a laser scan, calculating convex hull

footprint from pose array, getting neighbors from pose

share messages and extracting velocity and pose of the

robot from the odometry. The next step is to calculate

Page 5 of 13

https://mc03.manuscriptcentral.com/tst

Tsinghua Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

6 Tsinghua Science and Technology, September 2015, vol(issue):000-000

preferred velocity from a global plan. This paper

implements a very simple global planner that generates a

straight path consisting of a number of way points from

the start to the goal. If the robot has already reached the

goal position and it only needs to adjust its heading, then

a stopping velocity command or rotating command will

be sent to the robot directly. Otherwise, the algorithm

will update the robot’s position and its neighbors’

according to the predefined control period. With all the

information up to date, VO lines from different aspects

will be calculated. Such VO lines include those from

neighbors, obstacles and various constraints, such as

aforementioned kinematic constraints, non-holonomic

constraints and so on. Once all VO lines are obtained, the

optimal velocity that is closest to our preferred velocity

is selected using Clear Path algorithm. Finally the

application will check the validation of the new velocity

computed. If it is valid, then the velocity will be sent to

the robot, otherwise the application will try the next way

point and calculate a new velocity.

To implement the whole application into a Storm

Topology, Spouts and Bolts that connect the Topology

and the message broker should be designed first. As there

are five types of information that need to be uploaded

into the Topology, five Spouts are defined. These Spouts

include odometry receiver Spout, scan receiver Spout,

pose array receiver Spout, configuration Spout and pose

share receiver Spout. The first three Spouts are used to

get robot state information, while the configuration

Spout receives basic parameters of the robot, such as

control frequency, acceleration limits, maximum

velocity, start pose and goal pose and so on, and the pose

share receiver Spout is responsible for feeding

information about all neighbors to the Topology. Two

Bolts are required for publishing the computed velocity

command and pose share messages to the message

broker respectively. As the algorithm needs neighbors'

information, all robots in the scene should publish their

state to a common IoT Cloud Channel periodically so

that they can share their newest state with each other. All

of these Spouts and Bolts are defined in a configuration

file and the IoT Cloud platform will automatically

generate them according to this file.

The rest components of the application in Figure 5 can

be implemented in different ways. For example, all of the

rest components can be integrated into one Bolt, or each

of the components can be implemented into a Bolt. Three

possible Topologies are shown in Figure 6.

(A)

(B)

(C)

(D)

Page 6 of 13

https://mc03.manuscriptcentral.com/tst

Tsinghua Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

et al.: Cloud based Real-Time multi-robot Collision Avoidance for Swarm Robotics 7

Fig. 6 Three possible topologies for collision avoidance application

All of the three Topologies are implemented in JAVA.

Topology A integrates all components into one Bolt. As

all messages are fed into the Bolt, the Bolt is so busy

dealing with new messages that the overall delay of the

velocity command is high. Topology C implements each

component into separate Bolts and even calculates

different types of VO lines in parallel. However, robot

state information has to be transmitted between several

Bolts, resulting in the serialization/deserialization

process along with the communication delay between

computation nodes consuming much more time than the

time that is saved by parallel computing. So the overall

delay of Topology C is also very high. By reviewing the

performance metrics of Topology A and C, it

demonstrates Bolts that process input messages from

Spouts require much less computation than the Bolts that

calculate VO lines and velocity commands. So in

Topology B, all components that process robot state

information are combined into one Bolt and other

components that calculate VO lines and velocities are

wrapped into another Bolt. Such a design can reduce

delays caused by data transmission between Bolts and, at

the same time, isolate message processing from the main

collision avoidance algorithm.

Besides those Spouts and Bolts that interact with

message broker, there are five more components in

Topology B. To utilize collision avoidance control

service, a robot should first send its parameters and start

and goal poses to the Global Planner Bolt through its

Configuration Spout. The Global Planner Bolt will then

do the following jobs:

a) Make a global path plan according to the start and

goal Poses.

b) Spawn a custom-defined JAVA Object called Agent

that contains robot parameters, some algorithm

related state variables, and the global plan generated

before, and send it to Velocity Compute Bolt.

c) Spawn a Control-Publish Time State Object that

contains control period and pose share period, and

also two variables to record the last time that the

robot is controlled/published respectively. Besides,

there are two Boolean variables that record whether

the Topology is currently calculating velocity or

publishing pose share message. This Object will be

sent to the Dispatcher Bolt that triggers control or

pose share processes according to the given period.

d) Spawn a Pose Share Message Object that contains

basic information to be shared. This object is sent to

the Agent State Bolt for robot pose sharing.

Each of the three Objects spawned by the Global Planner

Bolt will be stored as <robot Id, object> Hash Map in the

destiny Bolt.

The Dispatcher Bolt will check those Control-Publish

Time State Objects stored in the Bolt instance for

controlling or pose sharing. Every 10ms it will receive a

Tuple from the Timer Spout, which will trigger the

Dispatcher Bolt to check whether it needs to emit a new

Tuple to the Agent State Bolt to start a new

controlling/publishing loop.

The Agent State Bolt implements modules that collect

up-to-date robot information as shown in Figure 5. If it

gets a Tuple that tells it to calculate a new velocity

command, then the Bolt will create a new Agent State

Object and store all current robot state information in the

Object then send it as a Tuple to the next Velocity

Compute Bolt. Otherwise, if the Tuple asks it to share the

robot information to others, the Bolt will fill a Pose Share

Message Object with the current state information and

send it to the Pose Share Publish Bolt to publish the

message to the message broker. After this Pose Share

Message is published, Agent State Bolt also needs to

send back a Tuple to the Dispatcher Bolt to tell it that the

current job is done and a new Pose Share task for this

robot can be accepted.

The Velocity Compute Bolt contains all other modules

for velocity command calculation. After a new Agent

State Object is received, this Bolt will select the correct

Agent Object from the Hash Map that stores Agent

Objects from Global Planner Bolt and then execute step

2 to step 6 in Figure 5. If the calculated velocity

command is valid, it will be sent to Velocity Command

Publish Bolt to publish the command back to the cloud

driver via a message broker. Just like Agent State Bolt,

this Bolt has to send a Tuple back to the Dispatcher Bolt

to tell it that the Topology is ready to receive the next

calculation request for this robot.

As mentioned before, some of the Bolts may cache some

runtime information about a robot. However each Bolt

can run multiple instances in parallel, and how to make

sure the proper Tuple is sent to the Bolt instance that

caches the right robot information is very important to

the process logic. In Apache Storm, the organization of

connections between instances of different connected

Bolts is called Grouping. Here, each Tuple, except the

one emitted from Timer Spout, is attached with the robot

id Field and Field Grouping based on the id Field is used.

However, for Timer Spout, all Dispatcher Bolt instances

need its periodical output as a time reference. Also the

Agent State Bolt instances need to cache every robot’s

Page 7 of 13

https://mc03.manuscriptcentral.com/tst

Tsinghua Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

8 Tsinghua Science and Technology, September 2015, vol(issue):000-000

pose share information so that they can extract all

neighbors for each robot. As such, these two components

use All Grouping.

The Topology shown in Figure 6(B) can be used to

control multiple robots and only needs them to send the

required information and parameters to the Topology.

From the Cloud Computing perspective, the IoT Cloud

platform that runs this application Topology can provide

robot collision avoidance control services to multiple

robots. And, with the ability to scale the platform, the

application, or even a single Bolt in the Topology, such

robot control framework can be used in Swarm Robotics

that need to control a multitude of robots and at the same

time retain the details of the robot model or the algorithm.

5. Experiment and results

5.1. Application verification test

To verify the application developed in this paper, several

experiments and tests were carried out.

As the algorithm implemented in this paper has already

been tested in real world local multi-robot collision

avoidance, this paper will only use a software simulator

to test the application. The simulator chosen is Simbad[24].

Simbad can simulate differential robot with laser scan

range finder sensor. More importantly, Simbad is a light-

weight simulator which is able to simulate more than 100

robots in one scene. Deployment of the whole

experiment system is shown in Figure 7.

Fig. 7 Deployment of the application

Apache Storm and Rabbitmq Message broker are

deployed on the FutureGrid Cloud Platform while the

IoT Cloud Gateway, Cloud Driver, ROS and the

simulator are deployed on a local desktop computer. The

Simulator will publish the information of each robot to

ROS and then IoT Cloud Driver will convert those ROS

messages into custom-defined JAVA messages that are

used in the Topology. Configurations of the system are

presented in Table 1.

Table 1 Hardware configuration of the system

 VMs in Cloud Local host

CPU Model Intel Core i7 9xx
Intel Core i7-

2620M

CPU

Frequency/Mhz
2933.436 2701

Cores 4 2

Thread per core 1 2

Memory/MB 8192 7900

OS
Ubuntu 12.04.4

(Linux 3.2.0)

Ubuntu 12.04.5

(Linux 3.13.0)

Hypervisor KVM None

The main task of this experiment is to test the

availability of the application for large scale robot

control. Since no SLAM (Simultaneous Localization

and Mapping)[25] module is developed in Simbad and

localization Pose Array cannot be generated, here

Gaussian noise is added to the robot pose to create a

fake localization pose array for test purpose. Pose

array is published at a frequency of 10Hz and other

information is published at a frequency of 20Hz.

Local test shows that the most computation-intensive

component is the Velocity Compute Bolt, so velocity

command delays for different number of robots with

a different parallelism hint for Velocity Compute

Bolt is measured. As shown in Table 1 there are 5

computation nodes with 20 cores in the cluster. To

make sure each Bolt instance runs in parallel, the

maximum number of parallel instances for Velocity

Compute Bolt is limited to 5, while for Agent State

Bolt it is set to 2 to see whether increased

parallelization of the Agent State Bolt can bring

better performance. Each of the other components in

the application Topology has only one instance. Also,

to make sure the computation load is evenly

distributed between the instances, the Filed Grouping

strategy is replaced by custom defined Module

Grouping and an index sequentially valued from 1 to

maximum number of robots is assigned to each robot.

This index is attached to all messages of the robot

and Module Grouping uses results of the index Mods

the number of target Bolt instances to select which

instance or task the message is sent to.

First, NPC (Number of parallelism for Velocity

Compute Bolt) is set to 5 and NPS (Number of

parallelism for Get Robot State Bolt) is changed from

1 to 2. Testing the delays and collision times for NR

(Number of robots) range from 5 to 50 to see how

many robots the system can serve. Both the control

frequency and robot pose share frequency are set to

Page 8 of 13

https://mc03.manuscriptcentral.com/tst

Tsinghua Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

et al.: Cloud based Real-Time multi-robot Collision Avoidance for Swarm Robotics 9

20 Hertz, which means velocity command latency

should be around 50 millisecond for the robots to

avoid colliding with each other effectively. All robots

are arranged on a circle with a radius of 6 meters and

centered on the origin of the coordinate. These robots

will go through the center to the antipodal position,

then turn around and repeat the process. Each test

runs for 300 seconds. Results are shown in Figure

8(A1) and Figure 8(B1).

Figure 8(A1) and Figure 8(B1) indicate that when the

number of robots increases to 25, collisions will

happen and the average velocity command delay

increases to around 57 milliseconds. So for NPC less

than 5, the maximum number of robots is set to 30.

The test results are shown in Figure 8(A2) to Figure

8(B3).

Figure 8(A2) to Figure 8(B3) show that when the

delay increases to around 60 milliseconds, collisions

will occur. However in dense scenarios, collisions

may still happen if the delay is less than, but still near

to, 60 milliseconds. Also, increasing the parallelism

of Agent State Bolt does not improve the

performance. This is because computation load on

the Agent State Bolt is very low (load capacity on this

Bolt is less than 5%) and the overhead resulting from

parallelization is almost comparable to the

computation load on this Bolt. Thus increased NPS

will generally bring no performance improvement in

this test.

(A1) (A2) (A3)

(B1) (B2) (B3)

Fig. 8 Test results for different combinations of NPC and NPS

NPC is the number of parallelism for Velocity Compute Bolt and NPS is the number of parallelism for Get Robot State Bolt. The

first column of the figures shows command delays and collision times of robots with NPC=5, NPS varying from 1 to 2 and the

maximum NR (Number of Robots) in the test set to 50. The rest of the figures show test results with NPC varying from 1 to 4, NPS

varying from 1 to 2, and the maximum NR in the test is set to 30.

All results in Figure 8 show that with the increase of

parallelism for Velocity Compute Bolt, delay of the

calculation for new commands decreases drastically,

which proves that IoT Cloud can be used for real-time

robot control. Moreover, IoT Cloud-based

applications can maintain good performance by

simply scaling the computation resources in the

Cloud when the number of robots increases. Such

scaling ability with real-time controlling provides a

novel approach for Swarm Robotics or even Swarm

Intelligence that includes more than just robotic area.

Figure 9 shows some snapshots of the simulation.

5.2. Performance test

Our previous test demonstrates that the application can

control a swarm of robots to avoid collision. However the

test cannot determine the peak performance of the

application since robots are not set in a dense scenario.

In this section, robots are arranged very close to each

Page 9 of 13

https://mc03.manuscriptcentral.com/tst

Tsinghua Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

10 Tsinghua Science and Technology, September 2015, vol(issue):000-000

other as shown in Figure 10 to test the performance of

the system.

Fig. 10 Test scenario

Robots are placed in a square array all facing the origin

of the coordinates and the antipodal position is set as the

goal. If the number of the robots in a row/column is odd,

all robots are shifted a little so that the start position and

the goal position will not be the same for each robot. In

addition, to keep the scenario dense all throughout the

test, the control command is not executed by robots, so

robots will not move during the test.

Previous results show that except for Velocity Compute

Bolt, other components in the Topology have load

capacity less than 5%, so there is still much computation

resources available in the cluster and increasing NPC to

a reasonable number larger than 5 will not affect the test.

Here NPC is set to 6, 8 and 10 with NPS varying from 1

to 2.

To get deep insight into the performance of key

components in the application, detailed time

consumptions in the control and pose share loops are

measured. The timeline for each loop running in the IoT

Cloud is shown in Figure 11. The pending process in

Figure 11 contains data transmitting between Bolts and

queuing to wait for the next Bolt to become available. If

the sum of all pending and computing time in a loop is

less than the preset control/pose share period, there will

be additional waiting time.

Fig. 11 Timelines for control and pose share loops in the

Topology

Test results are shown in Figure 12 which is presented in

Appendix section. From Figure 12(A), it can be seen that

the application spends most of its time calculating the

velocity and waiting for the calculation of other robots.

So, by increasing NPC, more robots can run in parallel,

which will reduce the time in process 3 and subsequently

decrease the control latency as shown in Figure 12(A).

However, similar to the previous test, increasing NPS

will generally cause little degradation in the performance.

But with the increasing of NPC such degradation can be

ignored.

In the pose share loop as shown in Figure 12(B), time

needed for processing and data transmitting takes only a

very small portion of the overall control period. The

result is that the pose share period is always close to the

period that is preset. Although there is some overlap

between the two loops, the influence of pose share loop

on the control loop can be generally ignored.

The overall velocity command delay is shown in Figure

13 which is also presented in Appendix section. Here we

see that after the velocity command is emitted from the

Topology, it still needs some time to get to the robot. The

extra delay in this process contains both communication

latency and broker and ROS message routing latency.

When NPC is 6, the maximum extra delay is round

100ms, and after increasing NPC to 10, more velocity

command messages can be published in parallel, so the

maximum extra delay reduces to around 70ms.

Since the number of parallel instances for Velocity

Compute Bolt dominates the overall control delay for

each robot, it is important to analyze the relationship

between NPC and the maximum number of robots that

the application can serve while keeping command

latency close to the preset control period. To do so, the

relationship between the overall control latency and the

number of robots should be analyzed first. Then the

maximum number of robots for control latency that is

around the preset control period can be determined.

Fig. 9 Snapshots of the test

Page 10 of 13

https://mc03.manuscriptcentral.com/tst

Tsinghua Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

et al.: Cloud based Real-Time multi-robot Collision Avoidance for Swarm Robotics 11

Figure 13 shows that, when the overall delay is longer

than the preset control period which is set to 50ms in this

test, the relationship between NR and the delay is very

close to linear. Thus a linear function as shown in

equation (1) can be used to formulate the relationship

between NR and the overall delay.

TTt

bNRkt *
 (1)

While t is the overall control delay, NR is the

number of robots, k and b are coefficients for the

linear function, and T is the execution period of the

Time Spout. The reason for selecting TTt is that

only under this condition can the instance run in full load,

which can reflect the computation capacity of the

instance.

Using Linear Regression Analysis, k and b can be

calculated and the fitted curve is shown as blue dotted

line in Figure 13. k and b for different NPC are

listed in Table 2. By solving inequality (2), the maximum

number of robots that the application is able to run for

different NPCs can be found. The result is also in Table

2. This can be used to decide the computation resource

that is required for controlling a certain number of robots.

It is also the basis for system scaling and load balancing.

TbNRk * (2)

Table 2 Maximum number of robots that the application can

serve with different NPCs

NPC NPS k b n*

6 1 5.09 -68.2 23

6 2 5.29 -74.57 23

8 1 4.02 -61.07 27

8 2 4.17 -62.11 26

10 1 3.46 -57.04 30

10 2 3.47 -57.43 30

5.3. Discussion and future work

In applications and platforms that involve wide area

network communication, the data transmitting latency is

always the overhead that cannot be ignored. This has

been demonstrated in Figure 13. However the tests in this

paper run all robots in one desktop machine, thus

computation load, especially the graphic computation of

the simulator, and communication load are centralized on

one node. Such burdens can be greatly relieved in real

robot systems as they do not need so much computation

resource for simulation purposes, and communication

can be distributed in several Gateways. That means more

robots can be effectively controlled by the IoT Cloud.

But if the number of robots increases to certain large

values like 1000 or more, communication overhead still

should be considered carefully.

Lastly, data transmitting delay in the cloud can also be

tricky. As for Storm, currently, tasks are distributed by

the Nimbus node and cannot be set by program or

manually by commands. Therefore connected tasks that

distributed in different machines will suffer longer

communication delay than those distributed in the same

machine. These are the problems that need to be explored

in the future.

6. Conclusion

This paper provides a novel IoT Cloud-based

computation framework for Swarm robotics. To

demonstrate the viability of the framework for real-time

control of large number of robots, a local collision

avoidance algorithm is implemented as an IoT Cloud

application. Unlike other research work that tries to

minimize computation cost by ignoring important real

world factors, our setup adopts a complex algorithm that

can reflect more details about the real world scenario.

These computation-intensive tasks are transferred to the

Cloud, so that robots or other intelligent entities can be

simplified in both hardware and software. By offloading

computation to the IoT Cloud, more complex entities can

be studied in Swarm Robotics/Intelligence without

trimming off the details of the entity. Such precise

implementation of the entity model can lead to deeper

insight into swarm characteristics.

By implementing and testing the collision avoidance

algorithm on the Cloud Platform, scaling and real-time

controlling ability of the system is verified. The results

demonstrate that by simply scaling the computation

resources, one Cloud application can provide service for

more robots. Such features will greatly facilitate

extending the population in Swarm robotics and also

provide support for large-scale Swarm systems.

Acknowledgements

References

[1] G. C. Fox, S. Kamburugamuve, R. D. Hartman. Architecture

and measured characteristics of a cloud based internet of

things. in 2012 International Conference on Collaboration

Technologies and Systems (CTS). Denver, Colorado, USA,

2012.

[2] S. Kamburugamuve, L. Christiansen, G. Fox, A Framework

for Real-Time Processing of Sensor Data in the Cloud.

Page 11 of 13

https://mc03.manuscriptcentral.com/tst

Tsinghua Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

12 Tsinghua Science and Technology, September 2015, vol(issue):000-000

Journal of Sensors. (Article ID 468047), pp. 1-11, 2015.

[3] G. Beni, From swarm intelligence to swarm robotics, in

Swarm Robotics: Springer, 2005, pp. 1-9.

[4] H. Woern, M. Szymanski, J. Seyfried. The I-SWARM project.

in The 15th IEEE International Symposium on Robot and

Human Interactive Communication, 2006.

[5] M. Dorigo, E. Tuci, R. Groß, V. Trianni, T. H. Labella, S.

Nouyan, C. Ampatzis, J.-L. Deneubourg, G. Baldassarre, and

S. Nolfi, The swarm-bots project, in Swarm Robotics:

Springer, 2005, pp. 31-44.

[6] E. Şahin, Swarm robotics: From sources of inspiration to

domains of application, in Swarm robotics: Springer, 2005,

pp. 10-20.

[7] G. Mohanarajah, D. Hunziker, R. D'Andrea, M. Waibel,

Rapyuta: A cloud robotics platform, IEEE transactions on

automation science and engineering. Vol. 12, No. 2, pp. 481-

491, April 2015.

[8] D. Lorencik, P. Sincak. Cloud Robotics: Current trends and

possible use as a service. in 2013 IEEE 11th International

Symposium on Applied Machine Intelligence and

Informatics (SAMI), 2013.

[9] B. Kehoe, S. Patil, P. Abbeel, K. Goldberg, A survey of

research on cloud robotics and automation, IEEE

transactions on automation science and engineering. Vol. 12,

No. 2, pp. 398-409, April 2015.

[10] K. Kamei, S. Nishio, N. Hagita, M. Sato, Cloud networked

robotics. IEEE Network, Vol. 26, No. 3, pp. 28-34, 2012.

[11] L. Agostinho, L. Olivi, G. Feliciano, F. Paolieri, D.

Rodrigues, E. Cardozo, and E. Guimaraes. A cloud

computing environment for supporting networked robotics

applications. in 2011 IEEE Ninth International Conference

on Dependable, Autonomic and Secure Computing (DASC),

2011.

[12] J. Van Den Berg, S. J. Guy, M. Lin, D. Manocha, Reciprocal

n-body collision avoidance, in Robotics research: Springer,

pp. 3-19, 2011.

[13] P. Fiorini, Z. Shiller, Motion planning in dynamic

environments using velocity obstacles. The International

Journal of Robotics Research, Vol. 17, No. 7, pp. 760-772

1998.

[14] J. Van den Berg, M. Lin, D. Manocha. Reciprocal velocity

obstacles for real-time multi-agent navigation. in IEEE

International Conference on Robotics and Automation ICRA

2008, 2008.

[15] J. Snape, J. van den Berg, S. J. Guy, D. Manocha.

Independent navigation of multiple mobile robots with

hybrid reciprocal velocity obstacles. in IEEE/RSJ

International Conference on Intelligent Robots and Systems

IROS 2009, 2009

[16] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, R.

Siegwart, Optimal reciprocal collision avoidance for multiple

non-holonomic robots. Distributed Autonomous Robotic

Systems, Vol. 83, pp. 203-216, 2013.

[17] D. Hennes, D. Claes, W. Meeussen, K. Tuyls. Multi-robot

collision avoidance with localization uncertainty. in

Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems, 2012.

[18] D. Claes, D. Hennes, K. Tuyls, W. Meeussen. Collision

avoidance under bounded localization uncertainty. in 2012

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2012.

[19] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin, D.

Manocha, and P. Dubey. Clearpath: highly parallel collision

avoidance for multi-agent simulation. in Proceedings of the

2009 ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, 2009.

[20] L. Turnbull, B. Samanta. Cloud robotics: Formation control

of a multi robot system utilizing cloud infrastructure. in

Southeastcon, 2013 Proceedings of IEEE, 2013.

[21] M. T. Jones, Process real-time big data with Twitter Storm.

in IBM Technical Library, 2013.

[22] https://zookeeper.apache.org/.

[23] http://www.ros.org/.

[24] L. Hugues, N. Bredeche, Simbad: an autonomous robot

simulation package for education and research. in From

Animals to Animats 9: Springer, 2006, pp. 831-842.
[25] S. Thrun, J. J. Leonard, Simultaneous localization and

mapping, in Springer handbook of robotics: Springer, pp.

871-889, 2008.

Appendix

(A) Control Loop time consumptions

Page 12 of 13

https://mc03.manuscriptcentral.com/tst

Tsinghua Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://link.springer.com/book/10.1007/978-3-642-32723-0
http://link.springer.com/book/10.1007/978-3-642-32723-0

For Review
 O

nly

et al.: Cloud based Real-Time multi-robot Collision Avoidance for Swarm Robotics 13

(B) Pose Share Loop time consumption

Fig. 12 Time consumption in the Topology

Figure (A) shows time consumption for each part of the Control Loop as shown in Figure 11 with different combinations of NPC

(Number of parallelism for Velocity Compute Bolt) and NPS (Number of parallelism for Get Robot State Bolt). Figure (B) shows

time consumption for each part of the Pose Share Loop with different combinations of NPC and NPS.

Fig. 13 Overall control latency

This figure shows the overall command delay and the delay caused by computation and communication in the Cloud with different

combinations of NPC (Number of parallelism for Velocity Compute Bolt) and NPS(Number of parallelism for Get Robot State

Bolt).

Page 13 of 13

https://mc03.manuscriptcentral.com/tst

Tsinghua Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

